ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 142 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

Scientists Announce Breakthrough in Silicon Photonics Devices
Posted on Thursday, June 29, 2006 @ 22:57:01 UTC by vlad

Devices Building on a series of recent breakthroughs in silicon photonics, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a novel approach to silicon devices that combines light amplification with a photovoltaic – or solar panel – effect.




n a study to be presented today at the 2006 International Optical Amplifiers and Applications Conference in Vancouver, Canada, UCLA Engineering researchers report that not only can optical amplification in silicon be achieved with zero power consumption, but power can now be generated in the process.

The team's research shows that silicon Raman amplifiers possess nonlinear photovoltaic properties, a phenomenon related to power generation in solar cells. In 2004, the same group at UCLA Engineering demonstrated the first silicon laser, a device that took advantage of Raman amplification.

"After dominating the electronics industry for decades, silicon is now on the verge of becoming the material of choice for the photonics industry, the traditional stronghold of today's semiconductors," said Bahram Jalali, the UCLA Engineering professor who led researcher Sasan Fathpour and graduate student Kevin Tsia in making the recent discovery.

The amount of information that can be sent through an optical wire is directly related to the intensity of the light. In order to perform some of the key functions in optical networking – such as amplification, wavelength conversion, and optical switching – silicon must be illuminated with high intensity light to take advantage of its nonlinear properties. One example is the Raman effect, a phenomenon that occurs at high optical intensities and is behind many recent breakthroughs in silicon photonics, including the first optical amplifiers and lasers made in silicon.

The fundamental challenge in silicon photonics is the material stops being transparent at high optical intensities, making light unable to pass through.

"As light intensifies in silicon, it generates electrons through a process called two-photon-absorption. Excess electrons absorb the light and turn it into heat. Not only is the light and the data-carrying capacity lost, the phenomenon exacerbates one of the main obstacles in the semiconductor industry, which is excessive heating of chips. The optical loss also makes it all but impossible to create optical amplifiers and lasers that operate continuously," Jalali explained.

n previous attempts to deal with this challenge, a diode attached to the chip has been used to "vacuum" out the electrons which block light. This approach presents further problems, however, because the vacuum adds an additional watt of heat onto the chip – nearly a million times the power that a single transistor consumes in a digital circuit.

"In the past, two-photon absorption in silicon has resulted in significant loss for high power Raman amplifiers and lasers, reducing efficiency and necessitating complex mitigation schemes. UCLA Engineering's new development will enable recycling power that would otherwise be lost. In space and military laser systems, the impact of device efficiency on electrical power and thermal management is a prime consideration," said Dr. Robert R. Rice, senior scientist at Northrop Grumman Space Technology's Laser and Sensor Product Center.

The challenge of power dissipation in traditional silicon semiconductors already is so severe that it threatens to halt the continued advance of the technology described by Moore's law.

(Gordon Moore, one of Intel's founders, predicted in 1965 that innovative research would allow for a doubling of the number of transistors in a given space every year. In 1975, he adjusted this prediction to a doubling every two years.)

Because the UCLA Engineering team's discovery creates an advantage in heat dissipation, it represents a new perspective.

"The progress in silicon Raman lasers at UCLA Engineering by professor Bahram Jalali and his group has been very impressive, not only offering obvious benefits in photonic systems, but also opening up an entirely new approach," Rice added.

"This discovery is a step forward and makes it much more likely that the photonics and electronics will converge. If they do, many applications that silicon photonics has promised will come to fruition," Jalali said.

Silicon photonics technology has the potential to use the power of optical networking inside computers and to create new generation of miniaturized and low-cost photonic components, among other applications.

Jalali's research at UCLA Engineering has been funded by the U.S. Department of Defense through the Defense Advanced Research Project Agency (DARPA). The research was also co-sponsored by the Northrop Grumman Corporation.

Source: UCLA

Story from: http://www.physorg.com/news70726109.html

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Devices
· News by vlad


Most read story about Devices:
Overunity magnet motor released !


Article Rating
Average Score: 0
Votes: 0

Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"Scientists Announce Breakthrough in Silicon Photonics Devices" | Login/Create an Account | 1 comment | Search Discussion
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

Re: Scientists Announce Breakthrough in Silicon Photonics Devices (Score: 1)
by irjsi on Friday, June 30, 2006 @ 09:21:47 UTC
(User Info | Send a Message)
Skeptics, where are you? ? ?

". . .researchers report that not only can optical
amplification in silicon be achieved with zero power
consumption, but power can now be generated
in the process."

Aren't such claims the 'Kiss of Death' for both the
researcher(s) and the institutions wherein their
laboratory is located?

No further reference of claim noted in balance of article,
perhaps the above insertion was missed by the editors.

Oh; CONGRATULATIONS ! ! !

Roy Stewart,
Phoenix AZ



 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.