ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 270 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events
  • (August 7, 2024 - August 11, 2024) 2024 ExtraOrdinary Technology Conference

  • Hot Links
    Aetherometry

    American Antigravity

    Closeminded Science

    EarthTech

    ECW E-Cat World

    Innoplaza

    Integrity Research Institute

    New Energy Movement

    New Energy Times

    Panacea-BOCAF

    RexResearch

    Science Hobbyist

    T. Bearden Mirror Site

    USPTO

    Want to Know

    Other Info-Sources
    NE News Sites
    AER_Network
    E-Cat World
    NexusNewsfeed ZPE
    NE Discussion Groups
    Energetic Forum
    EMediaPress
    Energy Science Forum
    Free_Energy FB Group
    The KeelyNet Blog
    OverUnity Research
    Sarfatti_Physics
    Tesla Science Foundation (FB)
    Vortex (old Interact)
    Magazine Sites
    Electrifying Times (FB)
    ExtraOrdinary Technology
    IE Magazine
    New Energy Times

    Interesting Links

    Click Here for the DISCLOSURE PROJECT
    SciTech Daily Review
    NEXUS Magazine

    3-D Imaging -- First Insights Into Magnetic Fields
    Posted on Sunday, March 30, 2008 @ 20:16:04 GMT by vlad

    Science The magnetic field of a dipol magnet visualized by spinpolarized neutrons. Credit: Hahn-Meitner-Institut Berlin

    3-D images are not only useful in medicine; the observation of internal structures is also invaluable in many other fields of scientific investigation. Recently, researchers from the Hahn-Meitner-Institute (HMI) in Berlin in cooperation with University of Applied Sciences have succeeded, for the first time, in a direct, three-dimensional visualisation of magnetic fields inside solid, non-transparent materials. This is announced by Nikolay Kardjilov and colleagues in the current issue of the journal Nature Physics.


    The researchers in the imaging group used neutrons, subatomic particles that have zero net charge, but do have a magnetic moment, making them ideal for investigating magnetic phenomena in magnetic materials. When in an external magnetic field, the neutrons behave like compass needles, all aligning to point on the direction of the field.

    Neutrons also have an internal angular momentum, often referred to by physicists as spin, a property that causes the needle to rotate around the magnetic field, similar to the way in which the Earth rotates on its axis. When all of the magnetic moments point in the same direction then the neutrons are said to be spin-polarised. If a magnetic sample is irradiated with such neutrons, the magnetic moments of the neutrons will begin to rotate around the magnetic fields they encounter in the sample and the direction of their spin changes.

    Kardjilov's group used this phenomenon as a measurement parameter for tomography experiments using two spin polarisers (which only allow the passage of neutrons whose spin points in a specific direction) to polarise and then analyse the neutrons. By detecting changes in the spins, it is possible to “see” the magnetic fields within the sample.

    Kardjilov explains this by comparison with a medical CT scan; when a specimen is irradiated with x rays the density of the materials present alters the intensity of the light. "It's the same with our magnetic specimen, which changes the spin rotation of the neutrons", says Nikolay Kardjilov. "The equipment only allows passage of neutrons with a specific spin rotation, and this generates the contrast according to how the magnetic properties are distributed within the specimen. By rotating the specimen we can reconstruct a three-dimensional image."

    Since 2005, Nikolay Kardjilov has built up the neutron tomography section at HMI and now his group is the first to use spin rotation as a measurement signal for three-dimensional imaging. Normally, neutron imaging relies on the different levels of absorption of radiation by different materials to produce contrast. The measurement of magnetic signals is a novel concept and its success lies partly in the polarisers and analysers, and the detector system, which have been developed and built by the HMI researchers.

    Magnetism is one of the central research fields at HMI. To understand high temperature superconductivity, for example, it is vital to understand how magnetic flux lines are distributed and how these flux lines can be established in the material. With Kardjilov's experimental setup, it is now possible, among other things, to visualise magnetic domains in magnetic crystals three-dimensionally.

    Source: Helmholtz Association of German Research Centres
    Via: http://www.physorg.com/news126112074.html

     
    Login
    Nickname

    Password

    Security Code: Security Code
    Type Security Code

    Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

    Related Links
    · More about Science
    · News by vlad


    Most read story about Science:
    100 miles on 4 ounces of water?


    Article Rating
    Average Score: 0
    Votes: 0

    Please take a second and vote for this article:

    Excellent
    Very Good
    Good
    Regular
    Bad


    Options

     Printer Friendly Printer Friendly


    "3-D Imaging -- First Insights Into Magnetic Fields" | Login/Create an Account | 0 comments
    The comments are owned by the poster. We aren't responsible for their content.

    No Comments Allowed for Anonymous, please register

     

    All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
    Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

    PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.