ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 188 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

More Evidence for a Revolutionary Theory of Water
Posted on Monday, June 30, 2008 @ 23:50:09 UTC by vlad

Science Recent X-ray Spectroscopy studies have revealed that modern theories of the structure of liquid water are incorrect. (Courtesy: Stanford Linear Accelerator Center)

The traditional picture of how liquid water behaves on a molecular level is wrong, according to new experimental evidence collected by a collaboration of researchers from the Department of Energy's Stanford Linear Accelerator Center (SLAC) in California, RIKEN SPring-8 synchrotron and Hiroshima University in Japan and Stockholm University in Sweden.


The team, involving SLAC scientist Anders Nilsson, used advanced X-ray spectroscopy techniques to create a more detailed picture of water's molecular behavior. Published as the cover story in the June 30 edition of the journal Chemical Physics Letters, the findings could soon help overturn the established orthodoxy surrounding the substance most essential to life.

Water, by any measure, is strange stuff. It behaves unlike any other liquid. It has a tremendous capacity for carrying heat—which is why the Gulf Stream keeps Europe warm. Water's solid phase —ice— is less dense than the liquid, which is why ice floats; life on Earth could never have formed if oceans and lakes froze from the bottom up. Water also has unusually strong surface tension—a property essential for the capillary action at work in the roots of plants and within our cells. These strange properties are what make water such an essential substance to the existence of life.

But despite its prevalence and importance, liquid water is not well understood, and its molecular structure has been the subject of intense debate for decades. Ice, whose structure was long ago well established, forms a tight "tetrahedral" lattice of molecules each binding to four others. The prevailing model of liquid water holds that as ice melts, the molecules loosen their grip but remain generally arranged in the same tetrahedral groups.

In the recent study, Nilsson and colleagues probed the structure of liquid water using X-ray Emission Spectroscopy and X-ray Absorption Spectroscopy. These techniques use powerful X-rays, generated by a synchrotron light source, to excite electrons within a water molecule's single oxygen atom. Tuning the X-rays to a specific range of energies can reveal with tremendous precision the location and arrangement of the water molecules. In this way Nilsson's team found that water is indeed made up of tetrahedral groups, but clear evidence also emerged for the dominance of a second, less defined structure in the mix.

The idea that liquid water is made up of two structures is not new. German physicist Willhelm Conrad Röntgen, who discovered X-rays in the late 19th century, published a paper proposing that liquid water comprised two different structures—one tetrahedral "ice-like" structure, and another more loosely arranged structure, which helped explain why water behaves in such unusual ways. Now, more than a century later, the current study is giving new life to Röntgen's "two structure" model.

"It is amazing that the modern usage of X-rays demonstrates that Röntgen, more than 100 years ago, was on the right path," said Nilsson. "Water is still not fully understood, although it is the basis of our existence. I expect more surprises to be discovered in the future."

Settling the debate about water's molecular structure holds tremendous importance for a range of fields including medicine, chemistry and biology. Current molecular dynamics models, which are used to understand chemical and biological processes, are notoriously limited in their ability to predict water's behavior.

The current study is the most recent addition to a growing body of evidence for a new theory about the structure of liquid water. In 2004, Nilsson and colleagues sparked controversy with a paper published in Science that suggested the tetrahedral model of water was incorrect. Nilsson agrees that the debate is far from settled and that much work remains before a clear picture of liquid water emerges.

"Over the last decade or so we have discovered that materials once considered homogeneous exhibit complex nanoscale order," said Stanford Synchrotron Radiation Laboratory director Jo Stöhr. "In my view, the work on water is yet another example of the actual complexity of matter, this time within a simple liquid. Modern X-ray work appears to be triggering a new understanding of liquids and we may have only seen the beginning of a paradigm shift in our understanding."

But despite its prevalence and importance, liquid water is not well understood, and its molecular structure has been the subject of intense debate for decades. Ice, whose structure was long ago well established, forms a tight "tetrahedral" lattice of molecules each binding to four others. The prevailing model of liquid water holds that as ice melts, the molecules loosen their grip but remain generally arranged in the same tetrahedral groups.

In the recent study, Nilsson and colleagues probed the structure of liquid water using X-ray Emission Spectroscopy and X-ray Absorption Spectroscopy. These techniques use powerful X-rays, generated by a synchrotron light source, to excite electrons within a water molecule's single oxygen atom. Tuning the X-rays to a specific range of energies can reveal with tremendous precision the location and arrangement of the water molecules. In this way Nilsson's team found that water is indeed made up of tetrahedral groups, but clear evidence also emerged for the dominance of a second, less defined structure in the mix.

The idea that liquid water is made up of two structures is not new. German physicist Willhelm Conrad Röntgen, who discovered X-rays in the late 19th century, published a paper proposing that liquid water comprised two different structures—one tetrahedral "ice-like" structure, and another more loosely arranged structure, which helped explain why water behaves in such unusual ways. Now, more than a century later, the current study is giving new life to Röntgen's "two structure" model.

"It is amazing that the modern usage of X-rays demonstrates that Röntgen, more than 100 years ago, was on the right path," said Nilsson. "Water is still not fully understood, although it is the basis of our existence. I expect more surprises to be discovered in the future."

Settling the debate about water's molecular structure holds tremendous importance for a range of fields including medicine, chemistry and biology. Current molecular dynamics models, which are used to understand chemical and biological processes, are notoriously limited in their ability to predict water's behavior.

The current study is the most recent addition to a growing body of evidence for a new theory about the structure of liquid water. In 2004, Nilsson and colleagues sparked controversy with a paper published in Science that suggested the tetrahedral model of water was incorrect. Nilsson agrees that the debate is far from settled and that much work remains before a clear picture of liquid water emerges.

"Over the last decade or so we have discovered that materials once considered homogeneous exhibit complex nanoscale order," said Stanford Synchrotron Radiation Laboratory director Jo Stöhr. "In my view, the work on water is yet another example of the actual complexity of matter, this time within a simple liquid. Modern X-ray work appears to be triggering a new understanding of liquids and we may have only seen the beginning of a paradigm shift in our understanding."

Citation: Chemical Physics Letters, DOI: 10.1016/j.cplett.2008.04.077; T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson, S. Shin; "High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs".

Source: Stanford Linear Accelerator Center
Via: http://www.physorg.com/news134058290.html

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 4.5
Votes: 2


Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"More Evidence for a Revolutionary Theory of Water" | Login/Create an Account | 0 comments
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.