ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 166 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

Physicists shed light on key superconductivity riddle
Posted on Monday, July 21, 2008 @ 23:21:06 GMT by vlad

Science This scanning tunneling microscope image of a bismuth superconducting compound shows a characteristic checkerboard pattern. The researchers believe this pattern indicates the presence of a charge density wave. Image / Doug Wise, Kamalesh Chatterjee and Michael Boyer, MIT

(PhysOrg.com) -- MIT physicists believe they have identified a mysterious state of matter that has been linked to the phenomenon of high-temperature superconductivity.

Led by Eric Hudson, associate professor of physics, the researchers are exploring materials that conduct electricity with no resistance at temperatures around 30 degrees Kelvin above absolute zero. Such materials could have limitless applications if they could be made to superconduct at room temperature.


Hudson's team is focusing on the state of matter that exists at temperatures just above the temperature at which materials start to superconduct. This state, known as the pseudogap, is poorly understood, but physicists have long believed that characterizing the pseudogap is important to understanding superconductivity.

In their latest work, published online on July 6 in Nature Physics, they suggest that the pseudogap is not a precursor to superconductivity, as has been theorized, but a competing state.

If that is true, it could completely change the way physicists look at superconductivity, said Hudson.

"Now, if you want to explain high-temperature superconductivity and you believe the pseudogap is a precursor, you need to explain both. If it turns out that it is a competing state, you can instead focus more on superconductivity," he said.

The researchers studied several samples of a bismuth compound that superconducts at high temperatures. Each has a different level of doping (number of extra oxygen atoms that change the material's electrical properties), which influences both its superconducting and pseudogap properties.

"We've studied a variety of samples and found trends which point toward one possible identity, which is a charge-density wave," said Hudson.

Others have suggested that the pseudogap might be a charge-density wave, but this is the first systematic study of a "checkerboard" pattern, which appears when the material is imaged with scanning tunneling microscopy (STM) across a range of samples. The doping dependency of the checkerboard pattern offers strong evidence of a charge-density wave, Hudson said.

"If it is true that the pseudogap is a charge-density wave, that would be a major, major outcome because people have been looking for this for the past decade," he said.

Lead author of the paper is graduate student William Wise. Other MIT authors are graduate students Michael Boyer and Kamalesh Chatterjee, postdoctoral associate Yayu Wang, and former postdoctoral associate Takeshi Kondo.

Provided by MIT
Via: http://www.physorg.com/news135864149.html

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 0
Votes: 0

Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"Physicists shed light on key superconductivity riddle" | Login/Create an Account | 1 comment | Search Discussion
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

Exotic materials using neptunium, plutonium provide insight into superconductivity (Score: 1)
by vlad on Monday, July 21, 2008 @ 23:23:26 GMT
(User Info | Send a Message) http://www.zpenergy.com
Exotic materials using neptunium, plutonium provide insight into superconductivity

Physicists at Rutgers and Columbia universities have gained new insight into the origins of superconductivity – a property of metals where electrical resistance vanishes – by studying exotic chemical compounds that contain neptunium and plutonium.


While superconductivity holds promise for massive energy savings in power transmission, and for novel uses such as levitating trains, today it occurs only at extremely cold temperatures. As a result, its use is now limited to specialized medical and scientific instruments. Over the past two decades, scientists have made metals that turn superconducting at progressively higher temperatures, but even those have to be cooled below the temperature of liquid nitrogen.

Still, physicists believe room temperature superconductivity may be possible. The work reported by the Rutgers and Columbia physicists is a step in that direction – shedding new light on the connection between magnetism and superconductivity.

"The exotic compounds we're studying will not become practical superconducting materials; however, by studying them we can learn the trends that govern a material's transition to superconductivity" said Piers Coleman, physics professor at Rutgers.
...
Full article: http://www.physorg.com/news135862196.html [www.physorg.com]



 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.