ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 167 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events
  • (June 9, 2021 - June 11, 2021) ICCF-23 online

  • Hot Links
    Aetherometry

    American Antigravity

    AESOP Institute

    Closeminded Science

    EarthTech

    Innoplaza

    Integrity Research Institute

    New Energy Movement

    New Energy Times

    The Orion Proj.

    Panacea-BOCAF

    QVac_Eng

    RexResearch

    Science Hobbyist

    Tom Bearden's Page

    USPTO

    Want to Know

    Other Info-Sources
    NE News Sites
    AER_Network
    Alternative Energy News
    E-Cat World
    NexusNewsfeed ZPE
    FringeEnergy News
    NE Discussion Groups
    Energetic Forum
    Energy21 YT Channel
    EMediaPress
    Energy Science Forum
    Free_Energy FB Group
    The KeelyNet Blog
    OverUnity
    Sarfatti_Physics
    Tesla Science Foundation (FB)
    Vortex (old Interact)
    Magazine Sites
    Electrifying Times (FB)
    ExtraOrdinary Technology
    IE Magazine
    New Energy Times

    Interesting Links

    Click Here for the DISCLOSURE PROJECT
    SciTech Daily Review
    NEXUS Magazine
    Find Jobs

    Black silicon photodetector breaks the 100% efficiency limit
    Posted on Tuesday, August 18, 2020 @ 17:00:40 MST by vlad

    Science
    Via Aalto University News: The efficiency was so high that at first the researchers had a hard time believing the result. Now Aalto University spin-off company ElFys Inc. already supplies the record detectors for several industry sectors.

    UV-light triggers electron multiplication in nanostructures. Figure: Wisa Förbom

    Aalto University researchers have developed a black silicon photodetector that has reached above 130% efficiency. Thus, for the first time, a single photovoltaic device has exceeded the 100% external quantum efficiency limit at UV. This result opens new avenues for improving efficiencies beyond the famous Shockley-Queisser limit.


    Aalto University researchers have developed a black silicon photodetector that has reached above 130% efficiency. Thus, for the first time, a single photovoltaic device has exceeded the 100% external quantum efficiency limit at UV. This result opens new avenues for improving efficiencies beyond the famous Shockley-Queisser limit.

    'When we saw the results, we could hardly believe our eyes. Straight away we wanted to verify the results by independent measurements', says Prof. Hele Savin, head of the Electron Physics research group at Aalto University.  

    The independent measurements were carried out by the German National Metrology Institute, Physikalisch-Technische Bundesanstalt (PTB), which is known to provide the most accurate and reliable measurement services in Europe.

    Head of the PTB Laboratory of Detector Radiometry, Dr Lutz Werner comments, 'After seeing the results, I instantly realised that this is a significant breakthrough - and at the same time, a much-welcomed step forward for us metrologists dreaming of higher sensitivities'. 

    The secret behind the breakthrough: Unique nanostructures

    The external quantum efficiency of a device is 100% when one incoming photon generates one electron to the external circuit. 130% efficiency means that one incoming photon generates approximately 1.3 electrons.

    The researchers found out that the origin of the exceptionally high external quantum efficiency lies in the charge-carrier multiplication process inside silicon nanostructures that is triggered by high-energy photons. The phenomenon has not been observed earlier in actual devices since the presence of electrical and optical losses has reduced the number of collected electrons. 

    'We can collect all multiplicated charge carriers without a need for separate external biasing as our nanostructured device is free of recombination and reflection losses', Prof. Savin explains.  

    In practice, the record efficiency means that the performance of any device that is utilising light detection can be drastically improved. Light detection is already used widely in our everyday life, for example, in cars, mobile phones, smartwatches and medical devices.

    'Our detectors are gaining a lot of attraction at the moment, especially in biotechnology and industrial process monitoring', says Dr Mikko Juntunen, CEO of Aalto University spin-off company, Elfys Inc. They are already manufacturing the record detectors for commercial use.

    The results leading to the record efficiency have been accepted for publication in Physical Review Letters with a title "Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%". 

    More information:

    Professor Hele Savin, Aalto University
    ph. 050 541 0156
    hele.savin@aalto.fi

    CEO Mikko Juntunen, ElFys Oy
    ph. 040 860 9663
    mikko.juntunen@elfys.fi


     
    Login
    Nickname

    Password

    Security Code: Security Code
    Type Security Code

    Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

    Related Links
    · More about Science
    · News by vlad


    Most read story about Science:
    100 miles on 4 ounces of water?


    Article Rating
    Average Score: 0
    Votes: 0

    Please take a second and vote for this article:

    Excellent
    Very Good
    Good
    Regular
    Bad


    Options

     Printer Friendly Printer Friendly


    "Black silicon photodetector breaks the 100% efficiency limit" | Login/Create an Account | 0 comments
    The comments are owned by the poster. We aren't responsible for their content.

    No Comments Allowed for Anonymous, please register

     

    All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
    Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

    PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.