Eeffects of quantum 'traffic jam' in high-temperature superconductors
Date: Wednesday, August 27, 2008 @ 23:59:43 UTC
Topic: Science


This image shows two states of a cuprate high-temperature superconductor simultaneously: Each circle represents the two electrons of a Cooper pair, which exist at relatively low energy and can carry current with no resistance. In this image, the superconducting Cooper-pair state is superimposed on a dashed pattern that indicates the static positions of electrons caught in a quantum "traffic jam" at higher energy - when the material acts as a Mott-insulator incapable of carrying current.

(PhysOrg.com) -- Scientists at the U.S. Department of Energy's Brookhaven National Laboratory, in collaboration with colleagues at Cornell University, Tokyo University, the University of California, Berkeley, and the University of Colorado, have uncovered the first experimental evidence for why the transition temperature of high-temperature superconductors -- the temperature at which these materials carry electrical current with no resistance -- cannot simply be elevated by increasing the electrons' binding energy. The research -- to be published in the August 28, 2008, issue of Nature -- demonstrates how, as electron-pair binding energy increases, the electrons' tendency to get caught in a quantum mechanical "traffic jam" overwhelms the interactions needed for the material to act as a superconductor -- a freely flowing fluid of electron pairs.


"We've made movies to show this traffic jam as a function of energy. At some energies, the traffic is moving and at others the electron traffic is completely blocked," said physicist J.C. Seamus Davis of Brookhaven National Laboratory and Cornell University, lead author on the paper. Davis will be giving a Pagels Memorial Public Lecture to announce these results at the Aspen Center for Physics on August 27...

Full story at http://www.physorg.com/news139060424.html







This article comes from ZPEnergy.com
http://www.zpenergy.com

The URL for this story is:
http://www.zpenergy.com/modules.php?name=News&file=article&sid=2996