Physicists harness effects of disorder in magnetic sensors
Date: Tuesday, September 09, 2008 @ 23:50:12 GMT
Topic: Science


(PhysOrg.com) -- University of Chicago scientists have discovered how to make magnetic sensors capable of operating at the high temperatures that ceramic engines in cars and aircraft of the future will require for higher operating efficiency than today's internal combustion technology.

...
Rosenbaum's research typically focuses on the properties of materials observed at the atomic level when subjected to temperatures near absolute zero (minus-460 degrees Fahrenheit). More than a decade ago, he led a team of scientists in experiments involving silver selenide and silver telluride, two materials that exhibited no magnetic response at low temperatures. But when the team introduced a tiny amount of silver (one part in 10,000) to the materials, their magnetic response skyrocketed.

In silver selenide and silver telluride, the magnetic response disappears at room temperature, which limits their technological applications. But Rosenbaum and Hu now have used two methods to recreate the effect at much higher temperatures in indium antimonide. Disordering the material—simply grinding it up and fusing it with heat—produces the effect. So does introducing impurities of just a few parts per million. ...

Full article: http://www.physorg.com/news140202028.html






This article comes from ZPEnergy.com
http://www.zpenergy.com

The URL for this story is:
http://www.zpenergy.com/modules.php?name=News&file=article&sid=3012