Nanoflowers Improve Ultracapacitors
Date: Tuesday, September 16, 2008 @ 23:01:05 GMT
Topic: Aux-Equipment

Nanoflower power: A transmission electron microscope image shows a flowerlike manganese oxide nanoparticle deposited at the junction of crossed carbon nanotubes. Used as an electrode material, this nanotube-manganese-oxide composite could improve the energy-storage ability of ultracapacitors, which show promise as powerful, long-lasting replacements for batteries.
Credit: American Chemical Society

Imagine a cell-phone battery that recharges in a few seconds and that you would never have to replace. That's the promise of energy-storage devices known as ultracapacitors, but at present, they can store only about 5 percent as much energy as lithium-ion batteries. An advance by researchers at the Research Institute of Chemical Defense, in China, could boost ultracapacitors' ability to store energy.

A capacitor consists of two electrodes with opposite charges, often separated by an insulator that keeps electrons from jumping directly between them. The researchers have developed an electrode that can store twice as much charge as the activated-carbon electrodes used in current ultracapacitors. The new electrode contains flower-shaped manganese oxide nanoparticles deposited on vertically grown carbon nanotubes...


This article comes from

The URL for this story is: