There and back again: from magnets to superconductors
Date: Wednesday, November 25, 2009 @ 23:00:40 UTC
Topic: Science


Interactions often modify the behavior of quantum particles and reorganize them into new phases of matter. One dramatic example is the superconducting state, where electrons with attractive interactions form Cooper pairs. The most pertinent interactions in metals are often effective ones—mediated by lattice vibrations and magnetism—and they can be altered by changing the electron environment. Changes to chemical composition, applying magnetic fields and or pressure have the most dramatic effect on the interactions near a so-called quantum critical point [1]. This is the point in the phase diagram where, at zero temperature, a metal is just on the verge of developing magnetic order.

In this vicinity electrons interact via intense quantum and thermal fluctuations of that incipient order. Those long-range interactions both modify the metallic properties and also lead to new low-temperature phases such as superconductivity. In a paper in Physical Review Letters [2], Gareth Conduit and Ben Simons at the Cavendish Laboratory in Cambridge and Andrew Green at the School of Physics and Astronomy at St. Andrews, both in the UK, undertake a theoretical study of metals near a ferromagnetic quantum critical point. They show that critical fluctuations there can favor a low-temperature phase that is the magnetic analog of a superconducting state...

Full article: http://physics.aps.org/articles/v2/93






This article comes from ZPEnergy.com
http://www.zpenergy.com

The URL for this story is:
http://www.zpenergy.com/modules.php?name=News&file=article&sid=3146