New graphene-like two-dimensional material could improve energy storage
Date: Tuesday, May 19, 2015 @ 01:11:40 GMT
Topic: Science

Via MIT and Harvard University researchers have created a graphene-like electrically conductive. porous, layered material as possible new tool for storing energy and investigating the physics of unusual materials.

They synthesized the material using an organic molecule called HITP and nickel ions, forming a new compound: Ni3(HITP)2.

The new porous material is a crystalline, structurally tunable electrical conductor with a high surface area — features that are ideal for supercapacitors.

The new material is composed of stacks of unlimited numbers of two-dimensional sheets resembling graphite, with a room temperature electrical conductivity of ~40 S/cm (Siemens per centimeter). The conductivity of this material is comparable to that of bulk graphite and among the highest for any conducting Metal-organic frameworks (MOFs)* reported to date.

Also, the temperature-dependence of its conductivity linear at temperatures between 100 K (Kelvin) and 500 K, suggesting an unusual charge transport mechanism that has not been previously observed in any organic semiconductors, and thus remains to be investigated.

In bulk form, the material could be used for electrocatalysis applications (modifying the rate of chemical reactions) similar to how platinum works (but at lower cost). Upon exfoliation (peeling off of successive layers), the material is expected to behave similar to graphene, but with tunable bandgap and electromagnetic properties, suggesting new uses and exotic quantum properties in solid-state physics...

Full story:

This article comes from

The URL for this story is: