New quantum imaging technique
Date: Thursday, April 18, 2019 @ 17:32:55 GMT
Topic: Science

In quantum materials based on transition metals, rare-earth and actinide elements, electronic states are characterized by electrons in orbitals d and f, combined with the solid's strong band formation. Until now, to estimate the specific orbitals that contribute to the ground state of these materials and determine their physical properties, researchers have primarily relied on theoretical calculations and spectroscopy methods.

In a recent study published in Nature Physics, a team of researchers at Max Planck Institute Dresden, Heidelberg University, University of Cologne, and DESY- Hamburg attempted to image a material's active orbitals directly in real space, without any modeling. The imaging technique they devised is based on s-core level and non-resonant inelastic X-ray scattering.

"We are interested in how materials attain their properties," Hao Tjeng, one of the researchers who carried out the study, told "We want to know how these can be explained on the basis of the behavior of the electrons in the materials. We are mostly interested in transition metal (3d, 4d, 5d) and rare-earth-based (4f) materials, since they offer a wealth of fascinating and tunable properties, important for fundamental science and for numerous other applications."

When they first started working on their study, Tjeng and his colleagues knew that the quantum mechanical equations that they would need to solve were unsolvable, as the relevant calculations would take an infinite amount of time. They thus realized that it would be far more practical and useful to image the orbitals in practical experiments.

"Usually, in order to determine what type of quantum mechanical states are realized in a material, one carries out spectroscopic measurements," Tjeng explained. "These have their merits, but also their limitations: one still need to do calculations to extract the information, and quite often the results are not accurate or reliable. We were thus looking for a new method that can provide a direct image of the quantum mechanical state straight for the experiment. Maurits Haverkort and I realized that inelastic x-ray scattering could provide such an opportunity." ....

This article comes from

The URL for this story is: