ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 167 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

The Ups and Downs of Doping
Posted on Friday, August 12, 2005 @ 07:08:50 UTC by vlad

Science normablue writes: The Ups and Downs of Doping/ 11 August 2005

Finding a theory that explains high-temperature superconductivity in cuprate materials is one of the outstanding challenges in condensed-matter physics. Now a team of physicists in the US and Japan has observed a new effect that could help in the search for such a theory. Cuprate materials are normally insulators but they become superconductors when dopant atoms are added. However, Seamus Davis of Cornell University and colleagues have found evidence which suggests that these dopant atoms can also lead to electronic disorder that damages the superconducting properties of the cuprates (Science 309 1048).

Doping generally involves adding impurities or charge carriers - which can be electrons or "holes" - to inert materials. The challenge is to produce the required electronic properties in the material with the dopant atoms, which are randomly distributed, without causing electronic disorder.

Davis and colleagues at Cornell, the University of California at Berkeley, the AIST laboratory in Tsukuba and the University of Tokyo studied crystals of bismuth strontium calcium copper oxide (Bi2Sr2CaCu2O8+x), also known as Bi-2212. This material is normally an insulator but it becomes a superconductor when extra oxygen atoms - which are a source of holes - are added. Superconductors lose their resistance to electric current when they are cooled below a transition temperature, Tc, that varies with the amount of doping. The basic phenomena underpinning superconductivity is the formation of Cooper pairs by the charge carriers.

Physicists have long suspected that dopant atoms lead to electronic disorder in Bi-2212 but there was no experimental evidence. Now Davis and co-workers have used a high-energy scanning tunnelling microscope (STM) to show that this disorder is caused by atomic-scale impurity states, and to show that it is highly likely that these impurity states are actually the dopant atoms. "If so," says Davis, "the doping process, although necessary to create superconductivity, also damages it near the dopant atom. The way this damage is caused is also completely different to what we expected and to what happens in conventional superconductors."



The results agree well with calculations performed by Peter Hirschfeld and colleagues at the University of Florida, which showed that the dopant atom distorts the "cage" of atoms around it and therefore changes the local electronic structure. Hirschfeld says that this could lead to an observable change in the local pairing interaction which, in turn, would lead to a change in the superconducting gap - the energy needed to break up the Cooper pairs.

Davis believes that better superconductors could be made by controlling the location of the dopant atoms. Indeed, two of his co-workers - Hiroshi Eisaki and Shin-ichi Uchida - have already increased the Tc of Bi-2212 to almost 100 Kelvin by minimising the disorder in the strontium-oxygen layer. This work could also help in the search to find a theory of high-temperature superconductors.

In conventional superconductors the formation of pairs and the onset of superconductivity are closely related. In the cuprates, on the other hand, they are quite independent. "The results in the Science paper gives us a hint about the mechanism responsible for the onset of superconductivity," says Uchida. "They indicate the presence of a parameter - in addition to the doping concentration and independent of the pairing mechanism - that is sensitive to the disorder or small changes in the environment around the copper oxide plane on the atomic scale."

About the author
Belle Dumé is Science Writer at PhysicsWeb


http://physicsweb.org/articles/news/9/8/8/1?rss=2.0

News for August 2005


 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 0
Votes: 0

Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"The Ups and Downs of Doping" | Login/Create an Account | 0 comments
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.