ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 280 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

A step nearer to understanding superconductivity
Posted on Wednesday, June 06, 2007 @ 22:48:22 UTC by vlad

Science Transporting energy without any loss, travelling in magnetically levitated trains, carrying out medical imaging (MRI) with small-scale equipment: all these things could come true if we had superconducting materials that worked at room temperature.

Today, researchers at CNRS have taken another step forward on the road leading to this ultimate goal. They have revealed the metallic nature of a class of so-called critical high-temperature superconducting materials. This result, which was published in the 31 May 2007 issue of the journal Nature, has been eagerly awaited for 20 years. It paves the way to an understanding of this phenomenon and makes it possible to contemplate its complete theoretical description.

Superconductivity is a state of matter characterized by zero electrical resistance and impermeability to a magnetic field. For instance, it is already used in medical imaging (MRI devices), and could find spectacular applications in the transport and storage of electrical energy without loss, the development of transport systems based on magnetic levitation, wireless communication and even quantum computers.

However, for now, such applications are limited by the fact that superconductivity only occurs at very low temperatures. In fact, it was only once a way of liquefying helium had been developed, which requires a temperature of 4.2 kelvins (-269 °C), that superconductivity was discovered, in 1911 (a discovery for which the Nobel Prize was awarded two years later.)

Since the end of the 1980s (Nobel Prize in 1987), researchers have managed to obtain ‘high temperature’ superconducting materials: some of these compounds can be made superconducting simply by using liquid nitrogen (77 K, or -196 °C). The record critical temperature (the phase transition temperature below which superconductivity occurs) is today 138 K (-135 °C). This new class of superconductors, which are easier and cheaper to use, has given fresh impetus to the race to find ever higher critical temperatures, with the ultimate goal of obtaining materials which are superconducting at room temperature. However, until now, researchers have been held back by some fundamental questions. What causes superconductivity at microscopic scales" How do electrons behave in such materials"

Researchers at the National Laboratory for Pulsed Magnetic Fields, working together with researchers at Sherbrooke, have observed ‘quantum oscillations’, thanks to their experience in working with intense magnetic fields. They subjected their samples to a magnetic field of as much as 62 teslas (a million times stronger than the Earth’s magnetic field), at very low temperatures (between 1.5 K and 4.2 K). The magnetic field destroys the superconducting state, and the sample, now in a normal state, shows an oscillation of its electrical resistance as a function of the magnetic field. Such an oscillation is characteristic of metals: it means that, in the samples that were studied, the electrons behaved in the same way as in ordinary metals.

The researchers will be able to use this discovery, which has been eagerly awaited for 20 years, to improve their understanding of critical high-temperature superconductivity, which until now had resisted all attempts at modeling it. The discovery has been effective in sorting out the many theories which had emerged to explain the phenomenon, and provides a firm foundation on which to build a new theory. It will make it possible to design more efficient materials, with critical temperatures closer to room temperature.

Source: CNRS
Via: http://www.physorg.com/news100341164.html

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 4.66
Votes: 3


Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"A step nearer to understanding superconductivity" | Login/Create an Account | 1 comment | Search Discussion
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

Re: Ultraconductors(tm) - equivalent to Room Temperature Superconductors (Score: 1)
by Overtone on Thursday, June 07, 2007 @ 20:59:35 UTC
(User Info | Send a Message) http://www.magneticpowerinc.com
Room-temp superconductor R&D?

Polymers capable of conducting at least 100,000 times better than gold, silver or copper exist. We call them Ultraconductors (see www.ultraconductors.com [www.ultraconductors.com]).

These are patented materials. They are made by the sequential processing of amorphous polar dielectric elastomers. They exhibit a set of anomalous magnetic and electric properties, including very high electrical conductivity ( > 1,011 S/cm-1) and current densities ( > 5 x 108 A/cm2) over a wide temperature range (1.8 to 700 K). Useful temperatures can approach 200 degrees Celsius (390 degrees F).

Additional properties established by experimental measurements include the absence of measurable heat generation under high current; thermal vs. electrical conductivity orders of magnitude in violation of the Wiedemann-Franz law (only observed in superconductors); a jump-like transition to a resistive state at a critical current; a nearly zero Seebeck coefficient over the temperature range of 87 to 233 K; and no measurable resistance when Ultraconductor films are placed between superconducting tin electrodes at cryogenic temperatures.

The only thing holding back further progress toward product development and wire has been a shortage of capital. Angels provided $5 million prior to the dot-com crash, which halted investment into high-tech firms not yet earning revenue. Four SBIR [Small Business Innovation Research] contracts, including a highly competitive Phase II for the U.S. Air Force, have been completed.

With sufficient funding (now on the horizon, as a result of progress in the development of fuel-free electrical generators by MPI) we will soon begin a wire R&D program. It will allow resumption of development of these remarkable materials for commercial markets.

Mark Goldes
Chairman and CEO
Room Temperature
Superconductors Inc.
A subsidiary of Magnetic Power Inc.



 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.