ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 122 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

Quantum Energy Teleportation
Posted on Thursday, April 11, 2024 @ 15:05:08 UTC by vlad

University of Waterloo/Institute for Quantum Computing: IQC researchers bring theory to reality with a new experiment

Energy is present everywhere in the universe, from the tiniest particles to the vastness of space. According to quantum mechanics, vacuum states like outer space are not actually empty, because when observed at microscopic scales, there are spontaneous energy fluctuations. These can be loosely interpreted as a sea of particles ‘popping in and out of existence’ for short times, and results in regions of positive and negative energy densities. Overall, these fluctuations keep the vacuum in its lowest possible energy state, known as the zero-point energy.



The team included Dr. Raymond Laflamme, IQC faculty member and professor in Waterloo’s Department of Physics and Astronomy, and Dr. Eduardo Martín-Martínez, IQC associate and professor in the Department of Applied Math, as well as Dr. Nayeli Rodríguez-Briones and Dr. Hemant Katiyar, both recent graduates from IQC and the Department of Physics and Astronomy, now working at University of California, Berkeley and IonQ Canada, respectively. Together, they experimentally tested the impact of entanglement between particles to extract energy from a vacuum state.

The concept of local extraction of zero-point energy was first proposed by Masahiro Hotta in 2008, who conceived the protocols named quantum energy teleportation. In this protocol, energy is not being moved or transported between the two locations. Instead, energy is spent in one location of the system to gather information. This information is then shared via entanglement and used at the second location to extract energy. This protocol had remained theoretical until now, as the team of IQC researchers has published the first experiment to test quantum energy teleportation.

“When you start focusing on local sections of the vacuum, you’re going to see fluctuations of energy. Sometimes, you’re going to have fluctuations that give you energy, and sometimes they take energy, but on average, you’re always going to be inputting energy into the system,” says Martín-Martínez. “But when the vacuum has entanglement — which is the case for most systems in the world — you can spend energy to get information about one local state. Then, you can send that information to somebody with access to a different part of the vacuum. From there, they can use that information to catch the right fluctuation in their local state to extract energy.”

In this experiment, the researchers used nuclear magnetic resonance (NMR) to simulate the quantum system of a vacuum using three carbon atoms in the molecule transcrotonic acid. The carbon nuclei each have an inherent spin state of either up or down, which can be harnessed as a qubit in NMR experiments. Two carbon nuclei (A and B) act as the entangled locations, and the third carbon nucleus acts as an auxiliary qubit. To perform the experiment, the auxiliary qubit was used to measure qubit A without transferring any energy between qubits A and B. The information gained from this measurement was then used to extract energy from qubit B without transferring energy between the qubits. This process demonstrated the feasibility of extracting energy in a strong local passive state using the quantum energy teleportation protocol.

“Our work gives insight into the interplay between entanglement and locality, and the effect it has on the energy flows in the system,” says Rodríguez-Briones. “Our research connects concepts from several fields, such as quantum information and quantum thermodynamics, which could potentially be useful for other theoretical physics problems and applications.”

While this experiment is the first step, this theory has implications in a wide range of quantum applications and our understanding of quantum theory. For example, understanding quantum energy teleportation protocols may give insights into the black hole information paradox and may lead to applications using quantum thermodynamics to improve quantum devices.

“By doing an experiment, even if it's a very simple first step in using theoretical ideas and concepts from quantum theory, we can prove that the world really behaves in alignment with the theoretical principles of quantum mechanics,” says Laflamme. “Our experiment shows that extracting energy from an entangled ground state is possible. It’s a small step, but it opens the door for many other things – quantum information science is becoming quantum information technologies.”

The article, Experimental activation of strong local passive states with quantum information, was published in Physical Review Letters on March 13, 2023.


 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about
· News by vlad


Most read story about :
Video: Zero-Point Energy (Philip Stott)


Article Rating
Average Score: 0
Votes: 0

Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"Quantum Energy Teleportation" | Login/Create an Account | 0 comments
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.